
Week 8 - Wednesday



 Web security
 Web attacks













 SMTP is the protocol for sending e-mail
 It's very straight-forward
 The from field is easy to spoof
 There are protocols with authentication built in, but regular 

SMTP is entrenched how
 You can never trust header information in an e-mail



 Phishing is when an e-mail tries to trick someone into giving 
out private data or doing something else unsafe

 Spear phishing is phishing that targets a specific individual
 Details about that user's life or accounts might be included

 Whaling is a term used for spear phishing of rich people or 
celebrities
 They have more money
 Many of their personal details could be public



 PGP (Pretty Good Privacy) is a system that uses the 
encryption mechanisms we described to send safe e-mails
 The public key system uses a decentralized web of trust where you 

add your friends' keys to your web and get keys for their friends and 
friends of friends

 S/MIME is a standard that is like PGP, but it uses hierarchies of 
trust based on certificates from central authorities instead of 
a web





 The OS has to enforce much of the computer security we want
 Multiple processes are running at the same time

 We want protection for:
 Memory
 Hard disks
 I/O devices like printers
 Sharable programs
 Networks
 Any other data that can be shared



 The OS has many functions that involve computer security
 Enforced sharing
 Interprocess communication
 Protection of OS data
 Guaranteed fair service
 Interface to hardware
 User authentication
 Memory protection
 File and I/O device access control
 Allocation and access control of general objects



 Originally, there were only single users
 Users programmed directly on the hardware

 Multitasking
 Modern systems run multiple processes (which do not share 

memory)
 Each process can have multiple threads (which do share memory)
▪ The book also mentions tasks, which are the same as threads on many 

systems

 We don't want processes to interfere with each other



 Virtualization is key to OS security, particularly of memory and 
disk usage

 Virtualization means providing one visible set of resources that 
are actually built on other resources
 User A only sees user A resources because it sees a virtual machine 

tailored for it
 A hypervisor is the program that implements the virtual machine, 

acting as mediator between virtual resources and real resources
 A sandbox is a virtual machine that prevents programs from 

endangering the rest of the system



 OS security is fundamentally based on separation
 Physical separation: Different processes use different physical 

objects
 Temporal separation: Processes with different security 

requirements are executed at different times
 Logical separation: Programs cannot access data or resources 

outside of permitted areas
 Cryptographic separation: Processes conceal their data so that it is 

unintelligible





 Protecting memory is one of the most fundamental protections an 
OS can give
 All data and operations for a program are in memory
 Most I/O accesses are done by writing memory to various locations

 Techniques for memory protection
 Fence
 Base/bounds registers
 Tagged architectures
 Segmentation
 Paging



 A fence can be a predefined or variable 
memory location

 Everything below the fence is for the OS
 If a program ever tries to access memory 

below the fence, it either fails or is shut down
 As with many memory schemes, code needs 

to be relocatable so that the program is 
written as if it starts at memory location 0, 
but actually can be offset to an appropriate 
location

OS 
Memory

User 
Program 
Memory

Fence



 In modern systems, many user programs run 
at the same time

 We can extend the idea of a fence to two 
registers for each program
 The base register gives the lowest legal address 

for a particular user program
 The bounds register gives the highest legal 

address for a particular user program

OS 
Memory

Program A 
Memory

Base A

Program B 
Memory

Program C 
Memory

Bounds A



 The idea of base and bounds registers can be extended so that 
there are separate ranges for the program code and for its data

 It is possible to allow data for some users to be globally readable 
or writable
 But this makes data protection all or nothing

 Tagged architectures allow every byte (or perhaps defined groups 
of bytes) to marked read only, read/write, or execute only

 Only a few architectures have used this model because of the 
extra overhead involved



 Segmentation has been implemented on many 
processors including most x86 compatibles

 A program sets up several segments such as code, 
data, and constant data
 Writing to code is usually illegal
 Other rules can be made for other segments

 A memory lookup is both a segment identifier and 
an offset within that segment

 For performance reasons, the OS can put these 
segments wherever it wants and do lookups
 Segments can be put on secondary storage if they are 

not currently in use
 The programmer sees a solid block of memory

Code

Constant 
Data

Data

Constant 
Data

Data

Code

Programmer's 
View

OS
View

Other 
users have 
their own 
segments



 Paging is a very common way of managing 
memory

 A program is divided up into equal-sized 
pieces called pages
 An address is page number and an offset

 Paging doesn't have the fragmentation 
problems that segmentation does
 It also doesn't specify different protection levels

 Paging and segmentation can be combined 
to give protection levels

Page 0

Programmer's 
View

OS
View

Other 
users have 
their own 

pages

Page 1

Page 2

Page 3

Page 0

Page 1

Page 3

Page 2





 A trusted OS is similar to a normal OS, except that it puts a layer 
of access control around everything

 A trusted OS will typically be careful about:
 User identification and authentication
 Mandatory access control
 Discretionary access control
 Object reuse protection
 Complete mediation
 Trusted paths
 Auditing
 Intrusion detection



 The trusted computing base
or TCB is the parted of a 
trusted OS that enforces the 
security policy

 It has to handle the most 
hardcore stuff



 Mandatory access control (MAC) means that the controls are 
enforced by rules in the system, not by user choices
 In a few slides, we'll talk about Bell-La Padula, a classic MAC system

 Discretionary access control (DAC) means that the user has 
control over who can access the objects he or she owns
 Linux and Windows are largely DAC systems

 Many real systems have elements of both



 When a file is deleted, it isn't actually deleted
 It's blocks are unlinked from the file system

 When you create a new file, it usually uses a block from an old deleted file
 You can examine the contents of that block and reconstruct some or all of 

the deleted file
 Software is available for home users to undelete files
 Digital forensics experts use more powerful tools in criminal investigations

 The problem is that object reuse allows for security violations
 A regular OS often does this and other kinds of object reuse for efficiency
 A trusted OS will sacrifice efficiency for security



 Complete mediation means that every access goes through the 
system
 All resources are checked
 Past permissions are no guarantee of future permissions

 A trusted path means an unmistakable process for performing 
protected tasks
 Phishing is the opposite of a trusted path
 Some attacks on OS users rely on getting them to download a file with the 

same name as a system command, which will then be run instead if they 
execute from the same directory



 Trusted systems also keep an audit log of all security-relevant 
actions that have been taken

 Unfortunately, audit logs can become huge
 Even if an illegal access is known to have happened, it might 

be impossible to find it in the logs
 Audit reduction is the process of reducing the size of the log 

to critical events
 This may require sophisticated pattern recognition software



 One approach to making a trusted system is 
a kernelized design

 A security kernel is the low level part of the 
OS that enforces security mechanisms
 It can be a unified layer sitting between 

hardware and the rest of the OS
 Or it can be spread throughout the entire OS

 The reference monitor is the most 
important part of the security kernel
 It controls accesses to objects
 It should be tamperproof, unbypassable, and 

analyzable







 Confidentiality access control 
system

 Military-style classifications
 Uses a linear clearance hierarchy
 All information is on a need-to-

know basis
 It uses clearance (or sensitivity) 

levels as well as project-specific 
compartments

Unclassified

Restricted

Confidential

Secret

Top 
Secret



 Both subjects (users) and objects (files) have security clearances
 Below are the clearances arranged in a hierarchy

Clearance Levels Sample Subjects Sample Objects

Top Secret (TS) Tamara, Thomas Personnel Files

Secret (S) Sally, Samuel E-mail Files

Confidential (C) Claire, Clarence Activity Log Files

Restricted (R) Rachel, Riley Telephone List Files

Unclassified (UC) Ulaley, Ursula Address of Headquarters



 Let levelO be the clearance level of object O
 Let levelS be the clearance level of subject S
 The simple security condition states that S can read O if and 

only if the levelO ≤ levelS and S has discretionary read access 
to O

 In short, you can only read down
 In a few slides, we will expand the simple security condition to 

make the concept of level



 The *-property states that S can write O if and only if the 
levelS ≤ levelO and S has discretionary write access to O

 In short, you can only write up



 Assume your system starts in a secure initial state
 Let T be all the possible state transformations
 If every element in T preserves the simple security condition 

and the *-property, every reachable state is secure
 This is sort of a stupid theorem, because we define “secure” to 

mean a system that preserves the security condition and the 
*-property





 Finish access control models
 Rootkits
 Network basics
 Network threats
 Network attacks
 Adam Garantche presents



 Read sections 6.1 and 6.2
 Keep working on Project 2
 Work on Assignment 3
 Due on Friday


	COMP 4290
	Last time
	Questions?
	Project 2
	Assignment 3
	Abiral Pokarel Presents
	Back to E-mail Attacks
	E-mail spoofing
	Phishing
	Secure e-mail systems
	OS Security
	OS security
	OS issues
	OS history
	Virtualization
	Separation
	Memory Protection
	Memory protection
	Fence
	Base/bounds registers
	Tagged architectures
	Segmentation
	Paging
	Trusted Operating Systems
	Trusted OS
	Trusted Computing Base
	Mandatory and discretionary access control
	Object reuse
	Complete mediation and trusted paths
	Auditing
	Kernelized design
	Mandatory Access Control
	Bell-La Padula Model
	Bell-La Padula overview
	Security clearances
	Simple security condition
	*-Property
	Basic security theorem
	Upcoming
	Next time…
	Reminders

